4^2n-1=1/256

Simple and best practice solution for 4^2n-1=1/256 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4^2n-1=1/256 equation:



4^2n-1=1/256
We move all terms to the left:
4^2n-1-(1/256)=0
We add all the numbers together, and all the variables
4^2n-1-(+1/256)=0
We get rid of parentheses
4^2n-1-1/256=0
We multiply all the terms by the denominator
4^2n*256-1-1*256=0
We add all the numbers together, and all the variables
4^2n*256-257=0
Wy multiply elements
1024n^2-257=0
a = 1024; b = 0; c = -257;
Δ = b2-4ac
Δ = 02-4·1024·(-257)
Δ = 1052672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1052672}=\sqrt{4096*257}=\sqrt{4096}*\sqrt{257}=64\sqrt{257}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{257}}{2*1024}=\frac{0-64\sqrt{257}}{2048} =-\frac{64\sqrt{257}}{2048} =-\frac{\sqrt{257}}{32} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{257}}{2*1024}=\frac{0+64\sqrt{257}}{2048} =\frac{64\sqrt{257}}{2048} =\frac{\sqrt{257}}{32} $

See similar equations:

| -x²+18=3x | | -3(x-12)+9x=6x+42 | | a/5-5=12 | | 12x+12=3×+84 | | 17.95x+24=18.95x+19 | | 12x+60=-60 | | 2^3x+7=8 | | 2/9x+2/3=2/3x-2 | | 31+3x=40 | | 5x–3=4x–8 | | 7x+19=-44 | | .8x=104 | | 11z-1/5z-2=3 | | 6(2x-3)=7(x-1)+5x | | 1.8y-3=y+2 | | 2x+3(2x+1)=8(x+1)-5 | | 5x=5.12 | | 30+7y=-2y-6 | | 2(3x-1)=6(x-1)+4 | | 1/2y²=12-y | | –6t+4=34+60 | | 168=21t | | c²+4=8c—8 | | 2p=6=p | | 78+g+12=1000 | | +4=8c—8 | | 3+4x=13-16x | | 4x+x+(x+0.54)=1.68 | | 3-3x=-9+3x | | 5a^-1+4=(2a)^-1 | | /10x–7=8x+13 | | s+42.8=75 |

Equations solver categories